Superconvergence Points of Fractional Spectral Interpolation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives∗

In this paper, superconvergence points are located for the approximation of the Riesz derivative of order α using classical Lobatto-type polynomials when α ∈ (0, 1) and generalized Jacobi functions (GJF) for arbitrary α > 0, respectively. For the former, superconvergence points are zeros of the Riesz fractional derivative of the leading term in the truncated Legendre-Lobatto expansion. It is ob...

متن کامل

Superconvergence of Jacobi-Gauss-Type Spectral Interpolation

In this paper, we extend the study of superconvergence properties of ChebyshevGauss-type spectral interpolation in [24, SINUM,Vol. 50, 2012] to general Jacobi-Gauss-type interpolation. We follow the same principle as in [24] to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address t...

متن کامل

Lagrange Interpolation and Finite Element Superconvergence

Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...

متن کامل

Superconvergence of a Chebyshev Spectral Collocation Method

We reveal the relationship between a Petrov–Galerkin method and a spectral collocation method at the Chebyshev points of the second kind (±1 and zeros of Uk) for the two-point boundary value problem. Derivative superconvergence points are identified as the Chebyshev points of the first kind (Zeros of Tk). Super-geometric convergent rate is established for a special class of solutions.

متن کامل

On sparse interpolation and the design of deterministic interpolation points

In this paper, we build up a framework for sparse interpolation. We first investigate the theoretical limit of the number of unisolvent points for sparse interpolation under a general setting and try to answer some basic questions of this topic. We also explore the relation between classical interpolation and sparse interpolation. We second consider the design of the interpolation points for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2016

ISSN: 1064-8275,1095-7197

DOI: 10.1137/15m1011172